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Abstract

What determines the likelihood a resident will take public transit? To understand the

relative effects of various determinants of ridership, this study focuses on the effects

of gasoline prices, controlling for other determinants such as number of workdays in

a given month, traffic, unemployment rate, and service quality. As gasoline prices

increase, it becomes more expensive to drive a car. Thus, customers would likely

shy away from driving and substitute towards the alternatives; one of which is public

transportation. This study aims to find the relationship between gasoline prices and bus

ridership at a disaggregated level (route type level) in the Twin Cities using Ordinary

Least Squares and Autoregressive Integrated Moving Average estimators. The cross-

price elasticities of local and express bus ridership with respect to gasoline prices are

0.139 and 0.220, respectively.
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1 Introduction

In order to reduce gasoline consumption, traffic congestion, and pollution, policymakers may

implement policies that increase gasoline prices. Policymakers hope that by doing so, they

will induce households to switch from gasoline-intensive transportation modes into cleaner

public transit. This thesis examines the relationship between gasoline prices and bus rider-

ship in the Twin Cities.

Within the past decade in the Twin Cities, gasoline prices have fallen to less than $2 per

gallon towards the end of 2008 and the beginning of 2009 (see figure 1 for the plot of gasoline

prices in the Twin Cities over time). Gasoline prices then start increasing to be between $3

and $4 and fluctuate on a relatively flat trend from 2011 until mid 2014, which is when there

is a significant fall in gasoline prices. Along with the fall in gasoline prices, we have also

noticed the fall in transit ridership. This seems to suggest a positive relationship between

gasoline prices and transit ridership. The change in consumers’ behavior towards public

transportation when gasoline prices change is not unique to the Twin Cities. Morath (2016)

writes on the Wall Street Journal blog about how the fall in gasoline prices is associated with

the fall in bus ridership nation wide. For policy implications, policymakers are interested in

whether or not changes in gasoline prices affect transit ridership.

As one of the two light rail lines in the Twin Cities is relatively new, I will focus on bus rid-

ership. For a more fine-grained analysis, I will divide bus ridership into two categories: local

and express. This thesis contributes to the literature by providing a more recent empirical

analysis on the relationship between gasoline prices and bus ridership at a disaggregated

level. The question I am investigating is: How do Changes in Gasoline Prices Affect Bus

Ridership in the Twin Cities? In order to answer this research question, I will also control

for other factors that may affect bus ridership in addition to gasoline prices such as number
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of workdays in a given month, unemployment rate, traffic, fare change, and service quality.

The following section discusses findings in the literature and how my thesis contributes

to the study of the relationship between gasoline prices and bus ridership. I will build the

theoretical framework for answering the question in section 3. In section 4, I discuss how I

select variables to be included, possible issues with the data, and summary statistics. Section

5 presents the empirical analyses and includes discussion of potential estimation issues, and

the main regression results. Section 6 provides discussion of the results. I conclude in section

7 and discuss directions for future research.

2 Literature Review

The impact of gasoline price changes on transit ridership has been a subject of interest

among economists for the past several decades. This relationship is frequently measured by

cross-price elasticities of demand for public transit ridership with respect to gasoline prices.

This term, cross-price elasticities, is defined as the percentage change in transit ridership

caused by a one percentage change in gasoline prices. Public transit can be divided into

different modes: buses, light rail, heavy rail, and commuter rail. Though it is not explicitly

specified, most studies that distinguish between transit modes find different elasticities for

each mode (Litman 2004).

Table 1 summarizes cross-price elasticities of ridership with respect to gasoline prices found

by previous literature. We can see that cross-price elasticities range from -0.17 to 0.88. This

range is considerably large. This might be because of the diversity in locations of data and

different time spans used in these studies, meaning that people from different time peri-

ods and/or different places react to changes in gasoline prices differently. Cities that are

more auto-dependent tend to be more sensitive towards changes in gasoline prices than more
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transit-oriented communities (Lane 2010).

Negative cross-price elasticities imply that as gasoline prices increase, transit demand de-

creases. This contradicts many studies’ finding that a rise in gasoline prices would cause

auto trips to be more expensive, causing consumers to substitute driving with other modes

of transportation, one of which is public transportation. Lane (2010) finds the cross-price

elasticities to be negative for Boston, Los Angeles, and San Francisco, for the time period

between 2002 and 2008 controlling for service changes, seasonality and trends. He does not

control for the lagged effects that changes in gasoline prices may have on transit ridership.

Lane (2012) aims to answer the same question as Lane (2010) but also includes lagged ef-

fects of gasoline prices. He finds the cross-price elasticities to be negative for 13 cities but

they correspond to different time lags of gasoline prices. Nine of the 13 cities have overall

positive cross-price elasticities, when taking into account elasticities at other lagged times.

Lane (2012) explains that this negative impact of lagged gasoline prices on bus ridership is

probably because bus riders tend to be lower-income and more transit-dependent.

The time periods studied might contribute to cross-price elasticities varying considerably

across studies. The values found in studies whose time period is during recession could be

very different from those found in other studies as there might be other unobservable factors

that affect transit ridership. During recession, people tend to have less disposable income so

they likely move toward cheaper modes of transportation that are readily available; one of

which is public transit. This, in effect, leads to an increase in transit ridership.

Although the studies have the same overall purpose, which is to estimate the impact of

gasoline price changes on transit demand, each paper uses different independent variables or

measures them differently. Some studies do not control for other variables when they study

the relationship between gasoline prices and transit ridership (Jong et al. 1999; Haire and
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Machemehl 2007; Currie and Phung 2007; Brand 2009; Maley and Weinberger 2009), while

some others do. Estimating the effect of gasoline prices on bus ridership without controlling

for other determinants may lead to an omitted variable bias. In the case where an omitted

variable has an effect on bus ridership and is positively correlated with gasoline prices, we

will overestimate the coefficient on gasoline prices.

Common covariates used in past studies are transit fares, service quantity and quality, trends,

lagged variables, season dummies, and other economic variables (for example, unemployment

rates, consumer price index, income level, etc.). Table 2 presents a summary of the inde-

pendent variables used in previous studies. Among those variables that are under transit

agencies’ control, service quality has proven most effective in incentivizing customers to take

public transit (Taylor and Fink 2003). Transit fare directly affects transit ridership, yet it

does not change often. Litman (2004) notes that the effects of fare increase are different

from those of a fare decrease. Customers tend to be more sensitive to price increases than

to price decreases.

There are other factors affecting transit ridership that are not under agencies’ control. Maley

and Weinberger (2009) and Lane (2010) suggest that seasonal variation affects transit rid-

ership. Summer ridership tends to be lower compared to the overall average (Doi and Allen

1986) because for close distances, people tend to walk and go on more vacations outside the

cities.

The effect of gasoline price changes on transit ridership differs in the short-run compared

to the long-run. According to previous literature, short-run is generally considered to be

within two years or less; longer than two years is considered long-run. In the short-run,

passengers tend to be less responsive (i.e. demand for public transit is less elastic) than in

the long-run (Litman 2004) because it takes time to switch from one transportation mode to
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another. For example, person A usually commutes via public transportation to work in the

city and does not own a car. Even though gasoline prices fall significantly, she needs time

and resources to switch from public transportation to driving. Contrary to Litman, Jong

et al. (1999) concluded that, in general, short-run elasticities tend to be higher. Litman

derives cross elasticities based on auto operating costs whereas Jong et al.’s cross elasticities

are based on fuel prices. Litman (2004) notes that the decline in elasticity values in Jong

et al.’s (1999) study is unique to fuel prices as motorists move towards more fuel-efficient

vehicles when fuel becomes more expensive. Jong et al. does not include other explanatory

variables. This may explain why their finding contradicts expectations. In addition to the

differences in elasticities over time and across transit modes, size and population of the city

also affect elasticity values. Demand for public transit is less elastic in large cities (bigger

size and/or denser cities) due to a higher number of transit-dependent riders (Lane 2010;

Litman 2004). Hence, it is more accurate to estimate the elasticities at a disaggregated level

instead of a nationwide estimate or the average across cities.

Even though there might be immediate effects on transit ridership when gasoline prices

change, evidence suggests that demand for public transit takes time to respond to the shock

(Goodwin 1992; Chen et al. 2011; Lane 2012). This suggests that we should not leave out

lagged gasoline prices in our study as it might affect the accuracy of our results; we would

most likely underestimate the effects of changes in gasoline prices on transit demand. This

also helps explain the wide range of cross-price elasticities found in various studies, because

although most studies include lagged gasoline prices, they are not of the same time lags.

Furthermore, Maley and Weinberger (2009), Nowak and Savage (2013) and Kennedy (2013)

suggest a non-linear response of transit ridership to gasoline price changes; elasticities are

larger at higher gasoline price range. Iseki and Ali (2014) find a higher cross-price elasticity

when gasoline prices are higher than $3 per gallon than when lower than $3, suggesting the

salience of price matters.
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The literature reviewed above measures the relationship between gasoline prices and transit

ridership using monthly observations and aggregate ridership at the mode level. Though

answering a similar research question, this thesis attempts to contribute to the literature

by evaluating the cross-price elasticities of bus ridership with respect to gasoline prices in

the Twin Cities using monthly observations broken down into local and express rides. By

separating local rides from express rides, it allows me to investigate these two types of bus

service in the Twin Cities at a more fine-grained level. This would likely give me a better

estimate of the relationship between gasoline prices and bus ridership. Local and express

riders face different service quantity and service quality. Express buses are mostly operated

during rush hours, tend to have fewer stops and longer route lengths, and are more likely to

be on-time compared to local buses. Thus, riders of these two bus route types are expected

to react to changes in gasoline prices differently.

3 Theory

In order to understand demand for public transit, I consider the choice among different modes

of transportation. Consumers choose mode depending on their individual characteristics as

well as mode-specific characteristics. They will maximize their utility by choosing the mode

that gives them the highest utility.

Following Trains (1986) qualitative choice model (also known as a discrete choice model),

the description above can be written as:

n choose i ∈ Jn if and only if U(xin, rn) > U(xjn, rn), for all j ∈ Jn, j 6= i (1)
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where n : the decision-maker,

Jn : the choice set faced by individual n,

U(x, r) : the utility function,

xin, xjn : all relevant characteristics of alternative i, j

faced by individual n,

rn : all relevant characteristics of individual n.

Equation (1) tells us that a decision-maker chooses the alternative that gives him the highest

utility among all the alternatives he faces. Utility function U(xin, rn) can be decomposed

into two sub-functions: the deterministic portion that is observed, and another portion that

represents all factors and aspects of utility that are unknown. We can write our utility

function as:

Uin = U(xin, rn) = V (zin, sn, β) + εin (2)

where zin : the observed characteristics of alternative i

faced by individual n,

sn : the observed characteristics of individual n,

β : a vector of parameters of the observed factors,

V (zin, sn, β) : the observed portion of the utility function,

εin : the unknown portion of the utility function.

We can see from equation (2) that two individuals who face the same choice set and the

same observed factors might choose different modes depending on how small or how large

their unknown portion, εin, is. In order to predict which mode a decision-maker chooses, we

will look at the choice probabilities for each alternative. The probability that an individual n

chooses alternative i is the limit of the proportion of times, as the number of times increases
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without bound, that a decision-maker who faces the same alternatives as individual n, and

with the same values of observed utility for each alternative, to choose alternative i. The

choice probabilities can be written as:

Pin = Prob(Uin > Ujn, for all j ∈ Jn and j 6= i) (3)

where Pin is the probability that individual n chooses alternative i.

Substituting (2) in (3), we get:

Pin = Prob(Vin + εin > Vjn + εjn, for all j ∈ Jn and j 6= i)

Rearrange:

Pin = Prob(εjn − εin < Vjn − Vin, for all j ∈ Jn and j 6= i) (4)

where Vin = V (zin, sn, β).

In equation (4), the difference Vjn− Vin is observed but εjn− εin is unknown, varying across

individuals with the same observed components of utility. Since both εjn and εin are random

variables, the difference εjn − εin is also random. Thus, the right-hand side of equation (4)

is a cumulative distribution: the probability that the random variable εjn − εin is below the

known value Vjn − Vin. This leads us to choosing between probit and logit probabilities in

order to investigate this relationship.

In this theory section, I use the logit probabilities because they are readily interpretable. In

this functional form, the random variable, εin, for all i ∈ J , is assumed to be extreme-value

(or Gumbel) distributed, identically and independently distributed across alternatives and

across individuals. Therefore, the probability that individual n chooses alternative i can be

written as:

Pin =
eVin∑
j∈Jn e

Vjn
, for all i ∈ Jn (5)
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The logit probability model ensures that each of the choice probabilities is between 0 and

1, probabilities for all alternatives sum to 1, and the relation of the choice probabilities is a

sigmoid, or S-shaped. In addition, it also has the independence from irrelevant alternatives

(IIA) property. This means that the ratio of two probabilities does not depend on any other

alternatives other than the two alternatives being compared.

Assuming that the representative utility is linear in parameters, the deterministic portion of

our utility function can be rewritten as:

Vin = βw(zin, sn) (6)

β is a vector of parameters and w is a vector-valued function of the observed data.

We can then rewrite equation (5) as:

Pin =
eβwin∑
j∈Jn e

βwjn
, for all i ∈ Jn (7)

where wjn = w(zin, sn).

The main question asked in this paper is how changes in gasoline prices affect transit rid-

ership. The changes in gasoline prices will affect an individuals decision whether or not to

drive, and thus may affect transit ridership. A fundamental property of logit models is that

only differences in representative utility affect the choice probabilities, not their absolute

levels. Thus, in binary choice situation like this, the logit probabilities can be simplified to:

PT =
eβwT

eβwT + eβwD
=

eβwT

eβwT + eβwD
× e−βwT

e−βwT
=

1

1 + eβwD−βwT
(8)
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where the subscripts T and D denote transit and driving, respectively. This property also

implies that variables and changes in variables that do not vary over alternatives cannot

affect the choice probabilities.

In addition to understanding how each observed variable affects choice probabilities, we

could also study the extent to which these probabilities change in response to a change in

some observed factor, i.e. elasticities. Elasticities are defined as the percentage change in one

variable caused by one percentage change in another variable. Direct-elasticities, meaning

the changes in choice probabilities are caused by their own observed factors, can be written as:

Eiyi =
∂Pin
∂yin

× yin
Pin

(9)

where Eiyi : the direct-elasticity,

yin : the observed factors of alternative i.

We have:

∂Pin
∂yin

=
∂(eVin)(

∑
j∈Jn e

Vjn)−1

∂yin
=
∂Vin
∂yin

× Pin(1− Pin) = βyPin(1− Pin) (10)

Substituting (10) in (9):

Eiyi = βyPin(1− Pin)× yin
Pin

= βyyin(1− Pin) (11)

The direction of Eiyi depends on constant βy. If the factor is desirable, βy will be positive,

and negative otherwise. In this paper, we are more interested in cross-elasticities of the

probability of choosing transit with respect to gasoline prices and other observed factors.

This cross-elasticity can be written as:

Eiyj =
∂Pin
∂yjn

× yjn
Pin

(12)
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where Eiyj : the cross-elasticity,

yjn : the observed factor.

We have:

∂Pin
∂yjn

=
∂(eVin)(

∑
j∈Jn e

Vjn)−1

∂yin
= −∂Vjn

∂yjn
× Pin × Pjn = −βyPinPjn (13)

Substituting (13) in (12):

Eiyj = −βyPinPjn ×
yjn
Pin

= −βyPjnyjn (14)

Assume that the only factor that affects a decision-maker n whether or not to drive is gaso-

line prices, and the only other mode available is public transit. If gasoline prices increase,

the decision-maker should have less incentive to drive, meaning that gasoline prices are not

a desirable attribute. Thus, βy should be negative. Because Pjn and yjn are always positive,

Eiyj is also positive. This means that an increase in gasoline prices has a positive effect on

transit ridership.

In order to understand how express and local bus riders might react to changes in gaso-

line prices differently, let’s assume that a decision-maker faces two choices: driving and local

buses, or driving and express buses. The magnitude of the cross-elasticities for the two

scenarios will be different if at least one of βy, Pjn, and yjn is different. Local and express

bus riders likely take buses for different purposes. Express riders are more likely to take

buses to commute to work compared to local riders. This suggests that the probability of

choosing public transit over driving (Pjn) will be different for express riders compared to

local riders. Thus, the cross-elasticities are very likely different for the two types of riders,

keeping everything else constant.
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4 Data and Summary Statistics

4.1 Data

This study will be based on bus ridership data provided by Metro Transit, the largest tran-

sit agency in Minnesota. Large transit agencies like Metro Transit usually serve different

neighborhoods, i.e. urban and suburban areas. Different neighborhoods most likely have

different service frequencies and different groups of customers, i.e. commuters versus urban

riders. Commuters are those who regularly use transit for commuting to work. Thus, they

are more likely consistent riders. Urban riders tend to be less consistent in taking transit

as they take shorter trips and for purposes other than commuting to work. I will separate

these two groups of riders and perform different analyses for each of them. In order to isolate

the effects of gasoline prices on bus ridership from one-time events that significantly affect

bus ridership such as the opening of the new light rail at Metro Transit in June 2014 and

the ongoing construction on Nicollet avenue in downtown Minneapolis, I will not include

ridership from routes that are heavily affected by these events.

There are different types of gasoline, each of which has a different price. I use the monthly

average of retail gasoline prices for my analyses. I convert these nominal prices to real

prices using the semi-annual consumer price index for all urban consumers in Minneapolis-

St. Paul. I obtain gasoline prices from the U.S. Energy Information Administration website

(http://www.eia.gov) and the consumer price index for all urban customers from the U.S.

Bureau of Labor Statistics (http://www.bls.gov).

Without services provided by the transit agency, riders would not be able to use public

transportation. Other things being equal, the more service provided, the higher the proba-

bility that one takes transit. One way to measure service quantity at Metro Transit is the
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number of in-service hours. While this is most of the time accurate, it can be biased. An

increase in in-service hours can either mean Metro Transit adds more service to a particular

route, or buses get delayed or detoured.

In addition to the biasedness in the variable itself, the in-service hours variable is also an

endogenous predictor. When riders notice the increase in in-service hours which is most

likely equivalent to higher frequencies, they might start riding and thus ridership increases.

At the same time, if Metro Transit notices an increase in ridership for any particular route,

it would likely increase service for that route. One way to solve this endogeneity caused by

the simultaneity between ridership and service levels is to estimate using an instrumental

variable. In my case, an instrumental variable is any variable that is highly correlated with

in-service hours, and uncorrelated with ridership. Due to limited time and resources, I could

not find an appropriate variable that fulfills this requirement. A possible proxy for service

quantity is service frequency. At Metro Transit, in addition to each route having a different

frequency, the service frequency for the same route is also different at different times of day.

They usually provide higher service frequencies during rush hours. So, it is very difficult to

quantify service frequency. Thus, I will use a different proxy, the number of workdays in a

given month. A workday is the weekday (Monday through Friday) that is not a holiday. At

Metro Transit, more service is provided on workdays compared to non-workdays. A portion

of routes operated by Metro Transit do not offer service at all on non-workdays, and most

of them provide limited service at a lower frequency on weekends. This suggests that more

workdays within a given month is more or less equivalent to more service provided by Metro

Transit. Thus, the number of workdays in a given month serves as a proxy for service levels.

In addition to service quantity, service quality is also a factor that can affect ridership.

If buses are never on time or always show up at different times every day, the utility of

taking transit will decrease and riders tend to shy away from taking buses. I will quantify

service quality using the percent of the time buses are on time, i.e. on-time performance.
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At Metro Transit, a bus is on time if it is between one minute early and five minutes late

compared to the schedules.

Increase in transit fare should negatively affect ridership. Within the past decade, Metro

Transit has changed its fare system only once in October 2008. Thus, instead of including

the actual fare levels, I will create a dummy variable that identifies periods before and after

the fare changes.

Commuters, i.e. those who take transit to work, tend to choose transit over other trans-

portation modes. Most of express trips take the same amount of travel time as driving if

not less. With a relatively high parking cost and/or low parking availability, customers who

commute to work are better off taking transit than driving. This reflects in the level of em-

ployment in the metropolitan areas. Thus, employment level within transit-accessible areas

will positively affect ridership. In other words, the unemployment level will negatively affect

ridership, which is quantified by the unemployment rates within Minneapolis-St. Paul-

Bloomington areas. The unemployment rates are available on the U.S. Bureau of Labor

Statistics website (http://www.bls.gov).

For customers who can choose either to drive or take transit, traffic congestion will af-

fect their decision. When traffic is bad, driving or taking transit will not be significantly

different in terms of travel time. Sometimes buses, especially express routes, take less travel

time because they have access to lanes that regular vehicles cannot use. It is difficult to

quantify traffic congestion. So, I will use the monthly sum of the daily average number of

cars passing automatic traffic recording stations placed in the Twin Cities as a proxy. Only

the 56 stations that are active during the whole study period will be included to preserve

consistency. I obtain the traffic counts from the reports on Automatic Traffic Recorders pub-

lished on the Minnesota Department of Transportation website (http://www.dot.state.mn).
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Customers behave differently at different times of the year. As Doi and Allen (1986) note,

ridership tends to be lower in the summer. I will include month dummies to account for this

seasonality.

There are a few other variables that I would like to include in my model that are not

available or accessible. Car sharing service has been introduced to the Twin Cities for sev-

eral years and the demand tends to increase with time, but the data are private. The closest

proxy I find is the count of Google searches for Uber. Bike usage is another variable that

would add to my model but I could not find a good source for the data in the Twin Cities.

Since these two variables have an upward sloping trend over time, the time trend will be able

to capture their effects, if any, on bus ridership. The time trend will also capture the effects

of other variables that only vary annually such as population, income level, and passenger

vehicles registered in the Twin Cities.

For car drivers, parking availability/cost will affect their decision-making, but the data on

parking are not available to be collected. As a nature of this variable, it does not vary much

as parking spaces do not change unless there is a big event that adds or eliminates parking

spaces, and the costs remain relatively stable over time. So, it is most likely uncorrelated

with other explanatory variables, which means its absence in my model will not introduce

biasedness to my estimates.

4.2 Summary Statistics

The time period studied in this paper is from January 2008 to September 2015, which spans

the period for which data are available. Table 3 summarizes the data including their means,

standard deviations, minima, and maxima. Note that fare dummy variable is not included

in this table. The fare dummy variable identifies the periods before and after the fare change
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at Metro Transit in October 2008. All these variables have monthly frequency.

The monthly average of gasoline prices is 2.94 dollars per gallon with a standard devia-

tion of 0.51. Gasoline prices have a minimum of 1.68 dollars per gallon in December 2008

and a maximum of 3.94 dollar per gallon in June 2008. This tells us that the average gasoline

prices dramatically drop in the second half of 2008 from its six-year maximum to its six-year

minimum (see figure 2). Gasoline prices from the literature seem to cover a larger range of

values , from 1$ per gallon to more than 4$ per gallon, as some of the studies cover the periods

where gasoline prices fluctuate dramatically (e.g. the Great Recession) or use nominal prices.

Monthly express bus ridership averages at 578.1 thousand rides with a standard deviation

of 47.2 thousand. Monthly local bus ridership, which is about five times of that of express

buses, averages at 2.7 million rides with a standard deviation of 0.18 million. Both time

series are very seasonal (see figure 3), with higher values in the fall and lower in the summer.

My ridership values are smaller than most of the literature as they tend to use city-wide or

nation-wide values. Moreover, these data are very area- and date-range specific.

The number of workdays ranges from 18 to 23 days in a given month, which is similar

to Bates’ (1981) values. More often than not, there are 21 workdays in a given month (see

figure 4). Unemployment rates are as low as 3% in October 2014 and as high as 8.3% in

March 2010, with an average of 5.63% and a standard deviation of 1.45%. There is a signif-

icant increase in unemployment rate during the Great Recession from about 5% to 8%, and

it has been following a downward sloping trend since then (see figure 5). The unemployment

rates used in Nowak and Savage (2013) range from about 3.5% to 12% which spans a larger

range. These unemployment rates are for Chicago, whereas my values are for the Twin

Cities. As unemployment rates are area- and date-range specific, they are expected to have

different values.
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Traffic counts average at about 2.0 million vehicles passing the 56 automatic traffic recording

stations within a given month with a standard deviation of 0.1 million. This time series is

very seasonal (see figure 6) and tends to have the lowest values in the winter. On aver-

age, buses are on-time 87.9% of the time, with the worst performance at 79.8% and the

best performance at 91.6% (see figure 7). These two variables, traffic count and on-time

performance, do not appear in other studies so I cannot compare them. The difference in

values and variables used in the estimates will likely lead to a slightly different value of the

cross-price elasticity of bus ridership with respect to gasoline prices.

5 Main Analysis

5.1 Ordinary Least Squares

I begin by estimating the relationship between bus ridership and gasoline prices with an

Ordinary Least Squares estimator while controlling for other factors including traffic, unem-

ployment rates, bus fare change, on-time performance, number of workdays in month, and

seasonality. I then decide on the lag structure of gasoline prices. The literature does not

agree on what the lag structure of gasoline prices should be. So, in order to identify the lag

structure I start by over-specifying it up to 11 month lags, and then eliminate those that are

statistically insignificant.

5.1.1 Local Routes

Since my data are time series, unit roots might be a problem. Thus, before regressing, I check

whether my dependent variable has unit roots using Augmented Dickey-Fuller (ADF) test.

I fail to reject the null hypothesis of the ADF test that the time series has unit roots, i.e.

it is nonstationary. I check for nonstationarity for all of quantitative explanatory variables.

Gasoline prices and unemployment rates are nonstationary. I then run the regression with my
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dependent variable and all the explanatory variables, and check whether the residuals of the

regression are also nonstationary. The residuals are stationary, which suggests that my time

series, which in this case is local ridership, is Engle Granger cointegrated with gasoline prices

and unemployment rates. Hence, I can estimate the relationship between gasoline prices and

local bus ridership in levels. The regression equation that I end up with for local bus routes is:

log(Local Rides)t = β0 + β1log(Gas Prices)t + β2L.log(Gas Prices)t

+ β3log(Traffic Count)t + β4Number of Workdayst

+ β5Unemployment Ratest + β6Fare Dummyt

+ β7On-time Performancet +
12∑
i=1

βi+7(Month==i) + εt

For an OLS estimator to be the “Best Linear Unbiased Estimator,” there cannot be multi-

collinearity among explanatory variables. I check for multicollinearity by calculating Vari-

ance Inflation Factors (VIFs). VIFs calculate the extent to which a given explanatory vari-

able can be explained by all other explanatory variables. My cutoff is VIF equals to five;

if VIF is higher than five, then the variables are highly correlated. As expected, gasoline

prices variable is very multicollinear with its lag. To keep both current effect and one month

lagged effect of changes in gasoline prices, I generate a new variable which is the moving

average of gasoline prices with two window periods. Thus, my regression equation becomes:

log(Local Rides)t = β0 + β1log(Gas Prices) 2-month Moving Averaget

+ β2log(Traffic Count)t + β3Number of Workdayst

+ β4Unemployment Ratest + β5Fare Dummyt

+ β6On-time Performancet +
12∑
i=1

βi+6(Month==i) + εt
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Table 4 shows the OLS regressing results for local ridership. The two-month moving average

of gasoline prices significantly affects local bus ridership with a coefficient of 0.137, and this

is within the range of cross elasticities found in the literature (-0.17 to 0.88). In other words,

ten percentage increase in gasoline prices this month is associated with 1.37 percent increase

in local bus ridership in total for this month and next month.

One percentage point increase in unemployment rates is associated with 1.7% decrease in

local bus ridership. This agrees with my hypothesis that unemployment rates are inversely

related with bus ridership. One extra workday within a given month is associated with 1.7%

increase in local bus ridership. Metro Transit usually provides more frequent service on

workdays compared to non-workdays. So, a higher number of workdays means more service

is provided, and thus more riders.

Traffic count does not have a statistically significant effect on local bus ridership. I expect a

positive relationship between the two because if traffic is bad, it might take essentially the

same amount of travel time to get from one place to another, whether one drives or takes

transit, and transit is much cheaper. Local buses do not usually operate on the freeways

and many auto traffic recorders are on the free ways. This might explain the insignificant

relationship between traffic count and local bus ridership. Fare dummy also appears sta-

tistically insignificant. Metro Transit changed its fare system in October 2008, early in my

study period. So, there are many more periods after than before fare change.

On-time performance does not statistically significantly affect local bus ridership. I ex-

pect a positive and significant relationship between the two. This insignificant relationship

might be because most of the high ridership local routes provide high frequency service,

which means it runs at least every 15 minutes during rush hours. The on-time performance

might not matter that much because the expected waiting time would not dramatically

November 8, 2016 Page 20 of 47



Economics Honors Thesis Kim Eng Ky

change when buses are late. It could also be because this on-time performance measurement

is calculated agency-wide.

5.1.2 Express Routes

I check for unit roots for express bus ridership using Augmented Dickey Fuller test. The

time series does not have unit roots. I estimate the relationship between gasoline prices

and express bus ridership in levels. After eliminating the statistically insignificant lags of

gasoline prices, the regression equation that I end up with for express bus routes is:

log(Express Rides)t = β0 + β1log(Gas Prices)t + β2L.log(Gas Prices)t

+ β3L2.log(Gas Prices)t + β4L3.log(Gas Prices)t

+ β5L4.log(Gas Prices)t + β6log(Traffic Count)t

+ β7Number of Workdayst + β8Unemployment Ratest

+ β9Fare Dummyt + β10On-time Performancet

+
12∑
i=1

βi+10(Month==i) + εt

I check for multicollinearity using variance inflation factors. Again, contemporaneous and

lagged gasoline prices are highly correlated. Hence, I generate a new variable which is the

moving average of gasoline prices with five window periods. My regression equation can,

then, be rewritten as:
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log(Express Rides)t = β0 + β1log(Gas Prices) 5-month Moving Averaget

+ β2log(Traffic Count)t + β3Number of Workdayst

+ β4Unemployment Ratest + β5Fare Dummyt

+ β6On-time Performancet +
12∑
i=1

βi+6(Month==i) + εt

Table 5 shows the OLS regression results for express routes. Overall, a ten percent increase

in gasoline prices is associated with a 2.20 percent increase in express bus ridership. In other

words, the cross-price elasticity of express bus ridership with respect to gasoline prices is

0.220. This falls in the range of cross-price elasticities found in the literature (-0.17 to 0.88).

It makes sense that the effect of changes in gasoline prices on express riders is somewhat

larger than on local riders. Express riders are often commuters who take transit to get from

a suburban area to work in the urban area, which usually is a longer trip than that taken by

local riders. Moreover, in the Twin Cities, express riders tend to be less transit-dependent

compared to local riders as they are more likely to have access to other mode of transporta-

tion, i.e. driving, and are associated with higher income. Thus, express riders are more

senstive to changes in gasoline prices than local riders (Mattson 2008).

Unemployment rates have a statistically significant effect on express bus ridership. A one

percentage point increase in unemployment rates is associated with 2.4 percent decrease in

express bus ridership. This inverse relationship agrees with my hypothesis. Number of work-

days also significantly affects express bus ridership. An additional workday in a given month

is associated with 4.8 percent increase in express bus ridership. This relative high coefficient

compared to that of local ridership makes sense. Most of the express routes provide highly

reduced service on non-workdays, if any. So, most of the ridership is from workdays. Thus,

an additional workday relatively highly affects the total monthly ridership.
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The fare change dummy is statistically significant and positive, which does not conform with

my hypothesis. It is very unlikely that the increase in fare attracted more riders so this might

be some factors that are not explained in my model. Moreover, it might also be because of

the lack of periods before the fare change. Traffic count does not significantly affect express

ridership. Again, this might be because the measurement is not specific to the particular

streets express buses operate on.

To validate the models for both local and express ridership, I look at their residuals. Fig-

ures 8 and 9 show the partial autocorrelation plot of residuals for local and express routes,

respectively. We can clearly see in figure 8 that the residuals for local ridership model are

autocorrelated at lag 1, and slightly at lag 4. To confirm there is autocorrelation in my

model for local bus routes, I test using the Durbin Watson test. I reject the null hypothesis

of no autocorrelation. This suggests that OLS does not do a good job in estimating given

the nature of my data. For express routes (figure 9), most of the partial autocorrelations

are within the 95% confidence intervals, but there is some autocorrelation at lag 4. I check

for the autocorrelation using the Durbin Watson test, and the result is inconclusive. The

inconclusive result of the Durbin Watson test and the partial autocorrelation plot of residuals

does not suggest a clear indication of whether or not there is autocorrelation. To ensure this

does not affect my estimates I will still take into account the possible autocorrelation in my

model for express ridership.

One of the main assumptions of an ordinary least squares estimator to be the best lin-

ear unbiased estimator is that the residuals are normally distributed with mean zero and

there is no autocorrelation. If the residuals are autocorrelated and the autocorrelation is

ignored, the standard errors will be underestimated, which leads to unreliable conclusion on

coefficients’ statistical significance. In the presence of autocorrelation, OLS is not efficient

as it no longer has the lowest variance among linear estimators. To deal with the autocor-

November 8, 2016 Page 23 of 47



Economics Honors Thesis Kim Eng Ky

relations, I can either include autoregressive process of the dependent variable in my OLS

models or use a different estimator that can deal with this problem. In this paper, I will

use Autoregressive Integrated Moving Average estimator, which estimates the coefficients

via maximum likelihood instead of least squares as in the case of ordinary least squares

estimator.

5.2 Autoregressive Integrated Moving Average

5.2.1 Introduction to ARIMA with Exogenous Regressors

To introduce ARIMAX models, I will base my definition on Hyndman’s online texts which

can be found at https://www.otexts.org/fpp.

Autoregressive Models

An autoregressive (AR) model is a regression with the dependent variable’s past values as

its regressors. An AR model with order p, i.e. AR(p), can be written as:

yt = c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p + et

where c is constant, p non-negative integer, and et white noise.

Moving Average Models

A moving average (MA) model regresses on the past errors terms instead of the values them-

selves. A MA model with order q, i.e. MA(q), can be written as:

yt = c+ et + θ1et−1 + θ2et−2 + ...+ θqet−q
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ARIMA models

ARIMA stands for autoregressive integrated moving average. ARIMA model incorporates

both autoregressive and moving average models, and the “integrated” refers to differencing

in case of non-stationary data, i.e. there is trend. An ARIMA(p, d, q) model, where p is the

order of autoregressive, d the degree of first differencing, and q the order of moving average,

can be written as:

(1− φ1L− ...− φpLp)(1− L)dyt = c+ (1 + θ1L+ ...+ θqL
q)et

where L is a lag operator such that Lyt = yt−1. The equation above clearly separates the

autoregressive, first differencing, and moving average parts of the model. If p = 0, then

(1− φ1L− ...− φpLp) = 1 corresponding to the model ARIMA(0, d, q). The same is applied

to the first differencing and moving average parts of the model.

ARIMA models with Exogenous Regressors

The models I have discussed so far are univariate time series models. The ARIMAX model,

(also known as dynamic regression model) is an ARIMA model that allows inclusion of other

information, i.e. covariates as the “X” refers to, in order to predict or estimate the response

variable. An ARIMAX model with p orders of autoregressions, d orders of first differences,

q orders of moving average, and n predictors can be written as:

(1− φ1L− ...− φpLp)(1− L)dyt = c+
n∑
i=1

βiXi + (1 + θ1L+ ...+ θqL
q)et

5.2.2 Local routes

To identify an appropriate ARIMA model, I start by looking at the partial autocorrelation

plot of my dependent variable. Figure 10 shows a partial autocorrelation plot for local
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ridership. We can see that after lag 5, most of the partial autocorrelations at larger lags are

essentially zero. This suggests that the order of the autoregressive process is five. I fit the

same specification as in the case of OLS but with autoregressive processes. I simplify my

model by dropping the autoregressive processes that are not statistically significant. The

model specification I end up with is ARIMA(4,0,0).

(1− φ1L− φ2L
2 − φ3L

3 − φ4L
4)log(Local Rides)t = c

+ β1log(Gas Prices) 2-month Moving Averaget

+ β2log(Traffic Count)t + β3Unemployment Ratest

+ β4Number of Workdayst + β5On-Time Performancet

+ β6Fare Dummyt +
12∑
j=1

β6+j(Month==j) + et

Before presenting the regression result from this model specification for local ridership, I

validate the model by checking whether there is autocorrelation in the residuals. Figure 11

shows the partial autocorrelation plot of residuals from the ARIMA model for local ridership.

We can see that autocorrelation is no longer an issue; up to lag 15, all partial autocorrela-

tions are within the 95% confidence interval box.

Table 6 shows the regression result from this model specification for local ridership. The

results are very similar to the OLS regression results I present earlier in terms of magnitude

and statistical significance. Overall, ten percent increase in gasoline prices is associated with

1.39 percent increase in local ridership (significant at 1% significance level). In other words,

the cross-price elasticity of local bus ridership with respect to gasoline prices is 0.139 com-

pared to 0.137 found using an OLS estimator. Again, this aligns with the cross elasticities

found in the literature which range from -0.17 to 0.88.
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Unemployment rates and number of workdays also statistically significantly affect local bus

ridership. One percentage point increase in unemployment rates is associated with 1.7 per-

cent decrease in local bus ridership, which is the same as the OLS estimate. An additional

workday in a given month is associated 1.7 percent increase in local bus ridership in that

month, which is also exactly the same as that found with an OLS estimator.

Traffic count, fare dummy, and on-time performance are not statistically significant which

is the same as estimating with an OLS estimator. Overall, the ARIMA regression results

in terms of magnitudes and significance of coefficients are very similar to those found with

the OLS estimator. The contribution of an ARIMA estimator in terms of giving a more

robust estimate is that the residuals are no longer autocorrelated. Moreover, from the au-

toregressive processes coefficients, we can see that current ridership is significantly affected

by its previous month values and four-month lagged values. Current month local ridership

is positively correlated with its previous month ridership, and negatively correlated with its

value from four months ago. The OLS estimator does not take this into account.

5.2.3 Express Routes

Although there is not a strong indication of autocorrelation, I will check to see if an autore-

gressive model would improve my model. I follow the same procedure to identify an appro-

priate ARIMA model for express ridership. Figure 12 shows the partial autocorrelation plot

for express bus ridership. The plot does not provide a clear drop in partial autocorrelations,

but it seems lag 6 is where the drop is even though some partial autocorrelations are outside

the 95% confidence intervals at larger lags. Thus, the order I am starting with is six for the

autoregressive process. I fit the same specification as in the case of OLS but with autore-

gressive processes. I simplify my model by dropping the autoregressive processes that are

not statistically significant. The model specification I end up with is ARIMA(0,0,0). This

is essentially the same as ordinary least squares regression. Without autoregressive and/or
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moving average process, ARIMA estimates are identical to OLS estimates even though one

is a maximum likelihood estimator and the other is a least squares estimator.

6 Discussion

From my regression results, there is enough evidence to suggest a significant relationship

between gasoline prices and bus ridership for both express and local bus routes. The cross

elasticities with respect to gasoline prices of local and express bus ridership in the Twin

Cities are 0.139 and 0.220, respectively. This aligns with my hypothesis as well as the liter-

ature. Both cross elasticities found are within the range of values found by other literature,

which is from -0.17 to 0.88. Express riders are more sensitive to changes in gasoline prices

as they tend to be less transit-dependent and are associated with higher income.

A policy implication derived from this study is to make it expensive to drive, which is

to keep gasoline prices at a relatively high level or increase gasoline taxes in order to incen-

tivize customers to switch to more environmentally friendly options, one of which is public

transportation.

Unemployment rates and number of workdays in a given month are two other factors that

significantly affect both local and express bus ridership. There is an inverse relationship

between unemployment rates and bus ridership, and a positive relationship between number

of workdays and bus ridership. These two findings align with my hypotheses as well as the

literature. The magnitude of the coefficients on both unemployment rates and number of

workdays are higher for express than local bus ridership. This makes sense because express

riders are more likely commuters who take public transit daily to work in downtown, so

a higher portion of express rides would be affected by the change in unemployment rates

compared to local bus rides which customers likely take for other purposes. Express bus
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routes are mainly operated on workdays. So, the ratio of service hours during workdays to

non-workdays is much higher than that of local bus routes. Thus, the higher effect of an

additional workday on express compared to local routes is expected.

Traffic counts do not have a statistically significant effect on bus ridership. This variable,

which is the proxy for traffic congestion, is very station specific. So, it is not surprising that

it did not show statistical significance across route types as the counts from those stations

may not reflect the actual traffic that both route types face.

The fare dummy variable, used in this study to identify the periods before and after the

fare change in October 2008 at Metro Transit, does not show any statistically significant

impact on local bus ridership but there is some impact on express bus ridership. The sign of

the coefficient is positive which does not agree with my hypothesis. In addition to the lack

of periods before the fare change, a dummy variable may not reflect what actually happens

and there may be other unobservable factors that contribute to the ridership. These unob-

servable factors might be from those variables that are omitted from the model (e.g. car

ownership, population growth). Even though they unlikely affect the coefficient estimate of

my main variable of interest which is gasoline prices, they might affect other explanatory

variables’ coefficients.

I expected on-time performance to significantly affect all types of ridership as it has proven

most effective in terms of policy implications (Taylor and Fink 2003). But, it does not sig-

nificantly affect bus ridership at all. On-time performance is measured agency-wide, and is

not specific to either of the route type in this study. Moreover, ridership from many routes

that Metro Transit operates are excluded because they are either seasonal, or significantly

affected by one time event such as the Green Line opening and the ongoing construction on

Nicollet avenue in downtown Minneapolis.
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7 Conclusion

Overall, both contemporaneous and lagged gasoline prices have significant effect on local

and express bus ridership as reflected in the coefficients of its moving average values. Un-

employment rates negatively affect bus ridership, and number of workdays positively affect

bus ridership. The fare dummy variable does not provide any insight into the relationship

between the fare change and bus ridership within the time period studied. Traffic counts

and on-time performance do not provide any statistically significant effect on bus ridership.

These findings are valuable in terms of policy implications for Metro Transit. With limited

resources, they can make better adjustments to changes in gasoline prices. The significant

coefficient on number of workdays provides evidence that an increase in service levels is asso-

ciated with higher ridership. So, one way to increase ridership is to increase service provided.

If the economy hurts employment level which causes unemployment rates to be high, Metro

Transit should consider decrease service for routes that mostly serve commuters which are

likely express bus routes.

For future research, a more route-type-specific proxy for traffic counts and on-time per-

formance, instead of the sum or average of all, would help improve this model. We should

also consider the possible non-linear relationship between changes in gasoline prices and bus

ridership as suggested by Maley and Weinberger (2009), Nowak and Savage (2013), and

Kennedy (2013). It could also be more robust by including all the variables that are hy-

pothesized to contribute to the changes in bus ridership such as parking availability/cost,

population growth, income levels, and car ownership.

November 8, 2016 Page 30 of 47



Economics Honors Thesis Kim Eng Ky

Acknowledgements

The author would like to thank Sarah West, Joel Huting, and Gary Krueger for the invaluable

advice and guidance. This research would not have been possible without the data from

Metro Transit as well as the help from the Strategic Initiatives team with collecting them.

Appreciation is also due to family and friends who were very supportive during the whole

experience.

November 8, 2016 Page 31 of 47



Economics Honors Thesis Kim Eng Ky

References

[1] Agthe, Donald E., and R. Bruce Billings. “The impact of gasoline prices on urban bus

ridership.” The Annals of Regional Science 12, no. 1 (1978): 90-96.

[2] American Public Transportation Association. “Rising Fuel Costs: Impacts on Transit

Ridership and Agency Operations Survey Results.” (2008).

[3] Bates, John W. “A study of demand for transit use.” (1981).

[4] Blanchard, Christopher. “The Impact of Rising Gasoline Prices on US Public Transit

Ridership.” PhD diss., Duke University, 2009.

[5] Brand, Daniel “Impacts of Higher Fuel Costs” U.S. Department of Transportation.

(2009). Web. http://www.fhwa.dot.gov/policy/ootp/innovation/issue1/impacts.hth. Feb

16. 2015.

[6] Chen, Cynthia, Don Varley, and Jason Chen. “What affects transit ridership? A dynamic

analysis involving multiple factors, lags and asymmetric behaviour.” Urban Studies 48,

no. 9 (2011): 1893-1908.

[7] Currie, Graham, and Justin Phung. “Exploring the impacts of fuel price increases on

public transport use in Melbourne.” In 29th Australasian Transport Research Forum,

Gold Coast. 2006.

[8] Currie, Graham, and Justin Phung. “Transit ridership, auto gas prices, and world events:

new drivers of change?.” Transportation Research Record: Journal of the Transportation

Research Board 1992, no. 1 (2007): 3-10.

[9] Currie, Graham, and Justin Phung. “Understanding links between transit ridership and

gasoline prices: evidence from the United States and Australia.” Transportation Research

Record: Journal of the Transportation Research Board 2063, no. 1 (2008): 133-142.

[10] Doi, Masayuki, and W. Bruce Allen. “A time series analysis of monthly ridership for an

urban rail rapid transit line.” Transportation 13, no. 3 (1986): 257-269.

[11] Goodwin, Phil B. “A review of new demand elasticities with special reference to short

and long run effects of price changes.” Journal of transport economics and policy (1992):

155-169.

November 8, 2016 Page 32 of 47



Economics Honors Thesis Kim Eng Ky

[12] Haire, Ashley R., and Randy B. Machemehl. “Impact of rising fuel prices on US tran-

sit ridership.” Transportation Research Record: Journal of the Transportation Research

Board 1992, no. 1 (2007): 11-19.

[13] Haire, Ashley R., and Randy B. Machemehl. “Regional and modal variability in effects

of gasoline prices on US transit ridership.” Transportation Research Record: Journal of

the Transportation Research Board 2144, no. 1 (2010): 20-27.

[14] Hyndman, Rob J. “Forecasting: Principles and Practice.” Forecasting: Principles and

Practice. Web. 13 Feb. 2016. https://www.otexts.org/fpp.

[15] Iseki, H., and Ali, R. “Net Effects of Gasoline Price Changes on Transit Ridership in

US Urban Areas.” (2014).

[16] Jong, GC de, L. Biggiero, and P. Coppola. “Elasticity Handbook: Elasticities for proto-

typical contexts (Deliverable 5).” TRACE, Costs of private road travel and their effects on

demand including short and long term elasticities. Europese Commissie, Brussel (1999).

[17] Kemp, Michael A. Bus service in San Diego: a study of patronage growth in the mid-

1970s. Urban Institute, 1981.

[18] Kennedy, David. “Econometric models for public transport forecasting.” (2013).

[19] Lane, Bradley W. “The relationship between recent gasoline price fluctuations and

transit ridership in major US cities.” Journal of Transport Geography 18, no. 2 (2010):

214-225.

[20] Lane, Bradley W. “A time-series analysis of gasoline prices and public transportation

in US metropolitan areas.” Journal of Transport Geography 22 (2012): 221-235.

[21] Lee, Jaimin, Sangyong Han, and Chang-Woon Lee. “Oil Price and Travel Demand.”

(2009): 1-88.

[22] Litman, Todd. “Transit price elasticities and cross-elasticities.” Journal of Public Trans-

portation 7 (2004): 37-58.

[23] Maley, Donald W., and Rachel Weinberger. “Rising gas price and transit ridership.”

Transportation Research Record: Journal of the Transportation Research Board 2139,

no. 1 (2009): 183-188.

November 8, 2016 Page 33 of 47



Economics Honors Thesis Kim Eng Ky

[24] Mattson, Jeremy Wade. Effects of rising gas prices on bus ridership for small urban and

rural transit systems. Upper Great Plains Transportation Institute, North Dakota State

University, 2008.

[25] Morath, Eric. “Low Gas Prices Drove Down Transit Use, So Why Can’t You

Find a Seat on the Train?” WSJ. N.p., 6 Apr. 2016. Web. 10 Apr. 2016.

http://blogs.wsj.com/economics/2016/04/06/low-gas-prices-drove-down-transit-use-

so-why-cant-you-find-a-seat-on-the-train/.

[26] Nowak, William P., and Ian Savage. “The cross elasticity between gasoline prices and

transit use: Evidence from Chicago.” Transport policy 29 (2013): 38-45.

[27] Stover, V. W., and C-H. Christine Bae. “The impact of gasoline prices on transit rid-

ership in Washington State. CD-ROM.” Transportation Research Board of the National

Academies (2011).

[28] Taylor, Brian D., and Camille NY Fink. “The factors influencing transit ridership: A

review and analysis of the ridership literature.” University of California Transportation

Center (2003).

[29] Train, Kenneth. Qualitative choice analysis: Theory, econometrics, and an application

to automobile demand. Vol. 10. MIT press, 1986.

[30] Wang, George HK, and David Skinner. “The impact of fare and gasoline price changes

on monthly transit ridership: empirical evidence from seven US transit authorities.”

Transportation Research Part B: Methodological 18, no. 1 (1984): 29-41.

[31] Yanmaz-Tuzel, Ozlem, and Kaan Ozbay. “Impacts of gasoline prices on New Jersey tran-

sit ridership.” Transportation Research Record: Journal of the Transportation Research

Board 2144, no. 1 (2010): 52-61.

November 8, 2016 Page 34 of 47



Economics Honors Thesis Kim Eng Ky

Figures and Tables

Figure 1: Time Series Plot of Nominal Gasoline Price
U.S. Energy Information Administration
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Figure 2: Time Series Plot of Real Gasoline Price
U.S. Energy Information Administration and U.S. Bureau of Labor Statistics

Figure 3: Partial Autocorrelation Plot of Residuals - Local Routes
Metro Transit, Minnesota
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Figure 4: Partial Autocorrelation Plot of Residuals - Local Routes
Metro Transit, Minnesota

Figure 5: Partial Autocorrelation Plot of Residuals - Local Routes
U.S. Bureau of Labor Statistics website
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Figure 6: Partial Autocorrelation Plot of Residuals - Local Routes
Minnesota Department of Transportation

Figure 7: Partial Autocorrelation Plot of Residuals - Local Routes
Metro Transit, Minnesota
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Figure 8: Partial Autocorrelation Plot of Residuals - Local Routes

Figure 9: Partial Autocorrelation Plot of Residuals - Express Routes
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Figure 10: Partial Autocorrelation Plot of Local Ridership

Figure 11: Partial Autocorrelation Plot of ARIMA Residuals - Local
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Figure 12: Partial Autocorrelation Plot of Express Ridership
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Table 1: Buses’ Cross Elasticities w.r.t Gasoline Prices from Previous Literature

Paper Location Date Range Elasticities

Agathe & Billings (1978) Tucson 1973-1976 0.42 (NS)

Bates (1981) Atlanta 1973-1976 0.23 (NS)

Kemp (1981) San Diego 1972-1975 0.29 (NS)

Wang & Skinner (1984) 7 U.S. cities 1970-1980 0.08-0.8 (SR)

Jong et al. (1999) Europe N/A 0.12 (LR)-0.16 (SR)

Currie & Phung (2006) Melbourne, AU 2002-2005 0.35 (SR)

Currie & Phung (2007) U.S. 1998-2005 0.04 (NS)

Currie & Phung (2008) Melbourne, AU 2002-2005 0 (NS)

Adelaide, AU 2004-2006 0.21 (NS)

Brisbane, AU 2002-2006 0.25 (NS)

Mattson (2008) Upper Midwest 1999-2006 0.08-0.50 (LR)

Blanchard (2009) 218 U.S. Transits 2002-2008 0.05-0.12 (NS)

Brand (2009) U.S. 2007-2008 0.13 (NS)

Maley & Weinberger (2009) Philadelphia 2001-2008 0.15-0.23 (NS)

Lane (2010) 9 U.S. Cities 2002-2008 -0.17-0.40 (NS)

Yanmaz-Tuzel & Ozbay (2010) New York City 1998-2008 012-0.22 (NS)

Stover & Bae (2011) Washington 2004-2008 0.17 (NS)

Lane (2012) 32 U.S. Cities 2002-2009 -0.09-0.88 (NS)

Nowak & Savage (2013) Chicago 1999-2010 0.06-0.28 (NS)

Iseki and Ali (2014) 10 U.S. Cities 2002-2011 0.06 (SR)-0.08 (LR)

LR indicates Long-run; SR indicates Short-run; NS indicates Not Specified
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Table 2: Independent Variables Used in Previous Literature

Paper Independent Variables

Agathe and Billings (1978)
Vehicle miles, Energy crisis dummy,

school in session dummy

Bates (1981)
Vehicle miles, Working days in month,

Time trend, School weeks in month

Kemp (1981)

Fare, Working days in month, Time trend,

Average speed, Waiting time, Service duration,

Stop spacing, Route length, School days,

Route dummies, Oil shortage dummy

Currie and Phung (2008) Interest rates

Mattson (2008) Monthly price variability, Service quantity, Trends

Blanchard (2009) Level of service, Time trends, Monthly fixed effects

Haire and Machemehl (2010)

Fare, Vehicle revenue hours, Vehicle operated in

maximum service, Consumer price index,

Weekdays in month

Lane (2010)

Gas price standard deviation, vehicle revenue

miles mode, Vehicle operated in maximum

service mode, Time, Seasons

Chen et al. (2011) Fare, Consumer price index

Lane (2012)
Monthly gas price variability, Service provision,

Trend proxies

Nowak and Savage (2013) Fare, Unemployment rates

Note: These variables are additional to Gasoline Prices
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Table 3: Summary Statistics

Variables Mean St. Dev. Min Max

Real Gasoline Price ($/gallon) 2.94 0.51 1.68 3.94

Express Ridership 578,114 47,166 488,624 710,333

Local Ridership 2,738,463 181,589 2,392,063 3,237,668

Number of Workdays per month 21.1 1.1 18.0 23.0

Traffic Counts per month 2,017,887 119,436 1,762,109 2,291,018

Unemployment Rate (%) 5.63 1.45 3.00 8.30

On-time Performance (%) 87.9 2.3 79.8 91.6
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Table 4: OLS Regression Results for Local Ridership

VARIABLES log(Local Rides)

log(Gas Prices) 2-month Moving Average 0.137***

(0.017)

Unemployment Rates -0.017***

(0.002)

Number of Workdays 0.017***

(0.004)

log(Traffic Counts) -0.043

(0.132)

Fare Dummy 0.012

(0.011)

On-time Performance 0.001

(0.002)

Constant 14.919***

(1.843)

Month Fixed Effects YES

Observations 91

R-squared 0.885

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 5: OLS Regression Results for Express Ridership

VARIABLES log(Express Rides)

log(Gas Prices) 5-month Moving Average 0.220***

(0.019)

Unemployment Rates -0.024***

(0.003)

Number of Workdays 0.048***

(0.004)

log(Traffic Counts) 0.025

(0.137)

Fare Dummy 0.077***

(0.011)

On-time Performance 0.001

(0.002)

Constant 11.614***

(1.914)

Month Fixed Effects YES

Observations 91

R-squared 0.920

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 6: ARIMA Regression Results for Local Ridership

VARIABLES log(Local Rides)

log(Gas Prices) 2-month Moving Average 0.139***

(0.015)

Unemployment Rates -0.017***

(0.002)

Number of Workdays 0.017***

(0.003)

log(Traffic Counts) -0.020

(0.110)

Fare Dummy -0.006

(0.012)

On-time Performance -0.000

(0.001)

L.ar 0.451***

(0.120)

L2.ar -0.169

(0.146)

L3.ar -0.088

(0.180)

L4.ar -0.316**

(0.144)

Constant 14.668***

(1.500)

Sigma 0.018***

(0.002)

Month Fixed Effects YES

Log Likelihood 237.571

Observations 91

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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